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Abstract

With thermal and mechanical nonequilbrium taken into consideration, the classical kinetic theory of boiling is mod-

ified to study unsteady-state homogeneous nucleation processes. Based on this newly developed model, the degree of

superheat and the maximum nucleation rate corresponding to different rates of temperature rise in water are calculated

and presented. For the first time, the initial nonequilibrium vapor pressure and the initial growth rate of bubble nuclei

with different initial embryo sizes and different rates of temperature rise are accurately modeled. The resulting algorithm

provides a method by which the details of bubble nucleation in a superheated liquid can be predicted, leading to a better

understanding of the kinetics of boiling. Model validation, accuracy and application are also presented and discussed.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Bubble nucleation in homogeneous liquids can take

place in a variety of applications, ranging from ink jet

printers to microelectronic cooling devices and micro-

bubble actuators in MEMS devices. This fundamental

phenomenon is also involved in the development of tech-

nologies required for the operation of nuclear reactors,

the storage and transportation of liquefied natural gas,

acoustic cavitations and laser-assisted phase-change

phenomena. In all of these applications, bubble nucle-

ation in a liquid (homogeneous nucleation) is directly re-
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lated to boiling incipience. As a result, control of this

nucleation has been of considerable interest to research-

ers and practitioners for nearly four decades, and

considerable effort has been devoted to a better under-

standing of the fundamental science and governing phe-

nomena of nucleation.

Homogeneous bubble nucleation has been investi-

gated in detail, both experimentally and theoretically

[1–9]. However, the fundamental mechanisms of bubble

nucleation are not well understood, especially during the

initial stages of unsteady-state boiling.

Although classical kinetic theory of boiling can be

used to explain the causes and some of the fundamental

mechanisms occurring in the explosive boiling in liquids,

theoretical results are not always in good agreement

with experimental data and much of the experimental
ed.
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Nomenclature

A surface area of bubble

b linear fitting factor in Eq. (1)

B coefficient in Eq. (8), B � 1� 1
3

1� P l

P e

� �
CP thermal capacity per molecule of liquid

f factor of nucleation frequency

Gb Gibbs number

hfg latent heat

J nucleation rate

k Boltzmann constant

m mass evaporated

M0 molecular mass

n molecular number evaporated

N number of liquid drop; bubble number per

unit volume

N0 number density of liquid

Ntotal initial number of liquid drop

P Pressure

Pe equilibrium vapor pressure with flat inter-

face

Pl bulk pressure

Pv hydrostatic vapor pressure with curved

interface

r initial size of bubble

rij distance between two molecules

_r initial velocity of bubble surface

€r initial acceleration of bubble surface

R gas constant

t time

T temperature

Tc temperature at critical point of phase dia-

gram

Tl liquid temperature of bulk

T0 reference temperature where J(T0) = 1

V volume of bubble

V0 volume of superheated liquid

vl molecular volume of liquid

Wmin minimum possible work to form a bubble

Greek symbols

d correction factor for the departure of vapor

pressure from equilibrium

dc critical value of dk
dk factor in Eq. (18)

DHfg enthalpy of evaporation per molecule

e representative scale of energy

k heat conductivity of liquid

m viscosity of liquid

q density

r surface stress

r 0 representative scale of length

f nucleation probability

Subscripts and superscripts
0 parameters in vapor bubble

c parameters in critical bubble

e equilibrium

f fluid

interface parameters at the interface of bubble

l liquid phase

ne nonequilibrium

v vapor phase
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data reported in the literature are inconsistent [1–9].

Furthermore, as summarized by Delale et al. [10], classi-

cal homogeneous nucleation theory ignores the effects of

curvature on the surface free energy. As a result, the

classical theory is unable to accurately predict the finite

limit at which the spinodal is approached.

Observation of the boiling phenomena from the per-

spective of homogeneous nucleation at constant pressure

and the second law of thermodynamics, indicates that

the experimental data of the superheat should be lower

than the superheat at which the process would occur

reversibly. As a result, the nonequilibrium work of for-

mation of a bubble becomes greater than the minimum

work of formation for the ideal case, in which the pro-

cess occurs reversibly, as assumed in classical nucleation

theory. This shortcoming has limited the application of

classical theory in correctly predicting values other than

the superheat, and forced the assumption of a case spe-

cific nucleation rate.
However, the classical theory of homogeneous bub-

ble nucleation may represent the best way to study of

the mechanisms that govern the formation of clusters

of the vapor phase in a metastable liquid, over a range

extending from the molecular level to the macroscale.

As pointed out by Delale et al. [10], using the stochastic

techniques, or methods of nonequilibrium thermody-

namics to describe homogeneous nucleation, is too com-

plicated to be used in practice, however, classical

nucleation theory can be used to predict the bubble size

and steady-state nucleation rates. In the classical theory,

most of the attention has been focused on the formation

of the critical bubble nuclei, which is in mechanical,

thermal, and chemical equilibrium with the surround-

ings [11]. Thus, the growth rate of the critical nuclei is

zero and the bubbles will remain at a constant size, pro-

vided the environmental conditions do not change.

However, this is not what would happen in the actual

phase change process, no matter how slow the tempera-
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ture rise rate is in the liquid. This implies that in reality,

a process that may appear to be steady-state from a

macroscopic point of view, is in fact unsteady-state from

a microscopic perspective. Another important reason for

studying these processes is that there are many questions

remaining to be answered, such as initial growth rate of

vapor bubbles and initial vapor pressure in the bubbles

during the nucleation process.

A number of assumptions have been made to ease the

difficulties associated with the mathematical formulation

of bubble growth heretofore and solvability of the prob-

lem in classical bubble dynamics. These include the

assumptions of the initial bubble size and the thermody-

namic process, i.e., isobaric or isothermal, neglecting the

complex interactions of heat and mass transfer between

the two phases during bubble growth, and ignoring the

transient process i.e., assuming constant bulk tempera-

tures [12–14]. In addition, while Kagan [15] has investi-

gated the nonequilibrium vapor pressure in the bubble

embryo from a mechanical nonequilibrium nucleation

theory perspective and Okumura and Ito [16] have done

so from a nonequilibrium molecular dynamics simula-

tion perspective, classical bubble dynamics typically

assumes an arbitrary initial nonequilibrium vapor pres-

sure to drive the nucleated bubble growth, due to a lack

of information on the nonequilibrium vapor pressure in

the bubble embryo.

The process of initial bubble nucleation in a super-

heated liquid is a key stage in the generation of vapor

in the boiling process. In the following analysis, the ini-

tial bubble nucleation during an unsteady boiling pro-

cess will be investigated and analyzed based on a

modification of classical kinetics of boiling developed

by Kagan [15] by taking into consideration the thermal

and mechanical nonequilibrium. Here, it is assumed that

the local transient maximum vapor pressure in the bub-

ble embryo is a function of time [13], which has been

demonstrated by nonequilibrium molecular dynamics

simulations [16,17]. The initial nonequilibrium pressure

in the vapor phase and the bubble growth rates for dif-

ferent initial bubble sizes and different rates of tempera-

ture rise in liquids are computed and discussed, and then

compared with the experimental results available in

the literature. The possible limits of superheat and

maximum number of bubbles in the liquid are calcu-

lated and discussed, and then combined with the phe-

nomenological nucleation barrier employed by Delale

et al. [10].

The results of the present analysis provide a quantita-

tive description of the initial bubble nucleation process,

which is critically important for both the fundamental

understanding and industrial applications, e.g., to calcu-

late the bubble growth with bubble dynamics and to pre-

dict the behavior of microbubbles as actuators in

MEMS.
2. Classical homogeneous nucleation theory in

superheated liquids

In most situations, impurities (gas or vapor) trapped

in the cavities of even a ‘‘smooth’’ surface become the

nuclei where the incipience of heterogeneous nucleation

is initiated. However, under the circumstances of intense

pulsed heating or the case of a volatile liquid droplet im-

mersed in an immiscible, nonvolatile, hot liquid, the

fluctuation nucleation in liquid becomes the driving

force for the incipience of homogeneous boiling. As de-

scribed in molecular kinetics, molecules of the liquid

are considered to have a distribution of energy, such that

only a very small fraction has an energy level that is con-

siderably greater than the average. While small in num-

ber, these �activated� molecules are presumed to initiate

the phase change process. Owing to the collisions occur-

ring among molecules, some regions have a denser col-

lection of these molecules, while in neighboring regions

they are relatively sparse. Such a region with a sparse

collection of molecules is formed by those activated mol-

ecules that scatter the neighboring nonactivated mole-

cules [16]. The initial nucleus of the nucleate bubbles is

formed in these regions [11].

In his pioneering work, Gibbs [18] developed the fun-

damental formulation that outlines and defines the min-

imum work to form a bubble nucleus, with which the

classical theory of homogeneous nucleation was origi-

nated by Volmer and Weber [19] and later Doring [20].

More quantitative treatments were later developed by

Zel�dovich [21], Frenkel [1], Kagan [15], and Blander

and Katz [4]. Some excellent pedagogical reviews on

homogeneous nucleation in a superheated liquid are

given by Skripov [2], Blander and Katz [4], Avedisian

[5] and Debenedetti [3].

Classical homogeneous nucleation theory suggests

that the largest nucleation rate J corresponding to

the minimum possible value of the critical work [2,11,

22] is,

J ¼ N 0 � f � exp �W min

kT l

� �
ð1Þ

where f can be interpreted as the factor of nucleation fre-

quency. Eq. (1) is the general form for the nucleation

rate, related to the possible maximum velocity of phase

transition for the possible minimum work required to

form a critical embryo.

According to Gibbs [18] and other researchers [3], the

minimum work, Wmin, required to form a bubble in the

homogeneous liquid phase of a single component can be

described as

W min ¼ rAþ n l0ðP 0Þ � llðP lÞb c � ðP 0 � P lÞV ð2Þ

where the superscript � 0� refers to the newly formed

phase. In the current work, the superscript � 0� specifically
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refers to the nonequilibrium state of vapor phase. The

above equation implies that within an existing phase

with a fixed mass, Wmin is the minimum work required

to form a new, enclosed phase. As such, Eq. (2) serves

as the fundamental equation in nucleation theory.

If the vapor phase is regarded as a perfect gas, replac-

ing the chemical potential of the liquid by the equal

chemical potential of the vapor in a critical bubble, the

chemical potential difference between vapor phase and

liquid phase becomes [3,4,15]

l0ðP 0Þ � llðP lÞ ¼ kT l ln
P 0

P c

ð3Þ

where Pc is the vapor pressure in the critical bubble and

comes from ll = lv,

P c ¼ P eðT lÞ exp ðP l � P eðT lÞÞvl=kT l½ � ð4Þ

with vl being the volume per molecule of liquid and Pe

being the saturation vapor pressure in an equilibrium

thermodynamic system.

Noting that A = 4pr2 and V ¼ 4
3
pr3 for spherical bub-

bles with radius r and substituting Eq. (3) into Eq. (2)

yields

W min ¼ 4pr2rþ nkT l ln
P 0

P c

� 4

3
pr3ðP 0 � P lÞ ð5Þ

In order to compute Wmin from Eq. (5), a relation be-

tween r and P 0 in the bubbles is required.

Doring [20] assumed that the vapor pressure satis-

fies the hydrostatic equation or Young–Laplace

equation

P v � P l ¼ 2r=r ð6Þ

If we invoke the Young–Laplace equation and define

the radius of the critical embryo to be rc = 2r/(Pc � Pl)

and assume that it is in thermal, chemical potential

and mechanical equilibrium with the liquid, where Pc

is the vapor pressure in the critical bubble, the work of

formation of such an embryo can be determined from

Eq. (5) as

W min ¼
4

3
pr2cr ð7Þ

which is widely accepted as the minimum reversible

work required to form a critical bubble embryo based

upon classical nucleation theory. If this critical embryo

is in thermal, mechanical and chemical equilibrium with

the bulk liquid, it is well known that the minimum work

Wmin exhibits a maximum value at the critical radius, rc,

given by oW min=orjr¼rc
¼ 0 and oW min=oP jP¼P c

¼ 0.

For small departures from equilibrium, Eq. (5) can

be expanded using a Taylor series for the critical bubble

(rc,Pc). Restricting the discussion here to the first two

orders of expansion yields
W minðr; P 0Þ � W minðrc; P cÞ þ
oW min

or

����
r¼rc

Dr

þ oW min

oP

����
P¼P c

DP þ 1

2

o2W min

or2

����
r¼rc

Dr2

þ 1

2

o2W min

oP 2

����
P¼P c

DP 2

þ o

oP
oW min

or

� �����
r¼rc ;P¼P c

DrDP ð8Þ

Though P 0 is related to r and is not independent, here it

can be regarded as another variable. Since the first-order

derivatives oW min=orjr¼rc and oW min=oP jP¼P c
are zero,

substituting the critical parameters into the equation

above yields

W minðr; P 0Þ � 4pr2cr
3

� 4prðr � rcÞ2 þ
2pr3c
3pc

ðP 0 � P cÞ2

ð9Þ

Kagan [15] pointed out the inaccuracy of using Eq.

(6) for the calculation of vapor pressure during the

nucleation process, and introduced the following hydro-

dynamic equation (the mechanical nonequilibrium equa-

tion) into the homogeneous nucleation theory:

P 0 ¼ P l þ ql r€r þ 3

2
_r2

� �
þ 2r

r
þ 4m

_r
r

ð10Þ

which is the well-known Rayleigh–Plesset equation

relating the vapor pressure in the bubble with the veloc-

ity and acceleration of the bubble growth. Eq. (10) is the

governing equation in classical bubble dynamics [12],

which reduces to Eq. (6) when _r ¼ €r ¼ 0.

In order to calculate the vapor pressure in Eq. (9)

with Eq. (10), Kagan [15] focused his attention on

obtaining the velocity and acceleration of the bubbles

having a critical radius. To this end, he considered the

thermal balance between the vapor in the bubble and

the liquid outside of the bubbles. He argued that when

there is a net flux of molecules evaporating into the bub-

ble, there must be a net flux of enthalpy across the inter-

face of the bubble. Also, there must be an equal enthalpy

flux to the interface from the bulk liquid at steady-state,

so that

k
oT l

or

� �
r¼R

A ¼ dn
dt

DH fg ð11Þ

where dn/dt is the net rate of vaporization of molecules

into the bubble, which can be obtained based on the dif-

ference between the chemical potentials of the liquid and

vapor and with the assumption that the vapor behaves

as an ideal gas to give [2–4,15]

dn
dt

ffi A

ð2pM0kT lÞ1=2
½P cðT interfaceÞ � P 0� ð12Þ



Fig. 1. Bubble nucleation and growth process (adapted from

Blander and Katz [4]).
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where Tinterface is unknown and can be found by solving

the energy balance equation.

After the minimum work is determined from Eq. (5),

(7) or (9) respectively, the bubble size distribution at

steady-state can be computed according to the Boltz-

mann equation

NðrÞ ¼ N 0 exp �W min

kT l

� �
ð13Þ

Using Eqs. (10)–(13) and the steady-state equation

for an ideal gas (P 0V = nkT 0) to calculate ðd _n=drÞr¼rc
,

and recognizing that at the point n = nc, the power of

the exponential in the integration part has an extremum,

the complicated relationship between P 0, _r, and €r can be

avoided by mathematical manipulation. Using this pro-

cess, Kagan [15] obtained the following equation to

determine the degree of superheat for the nucleation

process controlled by vaporization. This was later mod-

ified by Blander et al. [4] to arrive at the following

expression:

J ¼ N 0

2r
pM0B

� �1=2

1þ dc
exp � 16pr3

3kT lðP e � P lÞ2d2

" #
ð14Þ

where B � 1 � (1� Pl/Pc)/3 and dffi 1� qv/ql + (qv/ql)
2/2.

Here d is the correction factor for the departure of the

vapor pressure Pc in critical bubbles from the vapor

saturation pressure Pe with a flat liquid–vapor surface

at a given liquid temperature Pc � Pl = (Pe � Pl)d. The
expression of dc will be given in Section 3.3.

Eq. (2) can be calculated not only along a reversible

path (which is widely used in classical nucleation the-

ory), but it can also be calculated along an irreversible

path for real unsteady-state processes, as pointed out

by Delale et al. [10]. In order to obtain a direct solution

and compensate for the loss of work in an irreversible

case, and to be consistent with the second law of thermo-

dynamics, Delale et al. [10] employed a phenomenolog-

ical nucleation barrier that utilized the superheat

threshold achieved in experiments to revise the classical

theory of homogeneous bubble nucleation. Considering

the second law of thermodynamics and attempting to be

consistent with traditional nucleation theory, Delale

et al. [10] proposed the following expression for the min-

imum work to form of a critical bubble

W min ¼
4

3
pr2crð1� 2aÞ ð15Þ

where 0 6 a < 1/2. For a = 0, the above expression re-

duces to Eq. (7) given by the classical theory. In princi-

ple, the value of a can be obtained either by comparison

with experimental data (as will be discussed in Section

3.1 or with other theoretical calculations (e.g., density

functional method).
As will be pointed out later in this paper, the sensible

heat of the evaporated molecules is neglected in Eq. (11)

if the vapor phase is in thermal nonequlibrium with the

bulk liquid, and appears to apply for both steady and

nonsteady-state process (see Fig. 1). For a steady-state

process, however, the analysis of Kagan developed to

obtain the velocity and the acceleration of the bubble

surface, may not be entirely appropriate, and will be dis-

cussed later. Furthermore, from the analysis of Kagan,

it is not possible to obtain the initial nonequilibrium

pressure in vapor for different bubble sizes in a transient

process even though their departure from the equilib-

rium values is very small. In fact, it is this small depar-

ture from equilibrium that causes the initial bubble to

grow or collapse, and it is this small departure that is

the source of the small disturbance in nonequilibrium

bubble dynamics.

In the following, transient bubble nucleation with

thermal and mechanical nonequilibrium taken into con-

sideration will be analyzed to obtain the initial bubble

pressure and its initial growth rate with different initial

bubble sizes at different rates of temperature rise in a

superheated liquid. Based on this analysis, some funda-

mental relations in nonequilibrium nucleation and non-

equilibrium bubble dynamics can be established.



3086 J. Li et al. / International Journal of Heat and Mass Transfer 48 (2005) 3081–3096
3. Further considerations of unsteady-state

homogeneous bubble nucleation

In the previous discussion, the limitations of the clas-

sical theory of bubble nucleation in a superheated liquid

have been examined, and based on this examination a

number of observations can be made. First, it is clear

that the nucleation rate in the classical theory is strongly

dependent on the nucleation rate of the critical bubble

nuclei, which is assumed to be in thermal, force, and

chemical potential equilibrium with the surroundings;

second, the nucleation process has been assumed to be

a steady-state process. Thus, the classical theory is un-

able to answer the following questions: (i) how far from

the equilibrium state is the vapor pressure in a noncrit-

ical bubble nuclei? (ii) how fast will the bubbles grow

in an unsteady process? and (iii) what is the relationship

between the nonequilibrium state and the rate of tem-

perature rise in the liquid?

To answer these questions, it is necessary to obtain

the initial nonequilibrium vapor pressure and the initial

growth rate of the bubble nuclei. This can be done as

follows:

(i) Initially, the possible nucleation temperature at

different rates of temperature rise in a superheated

liquid is determined. Thus, properties of the liquid

and the parameters of the critical bubble nuclei

can be calculated (Section 3.1);

(ii) Once this has been accomplished, the variation of

the vapor pressure at the moment of bubble nucle-

ation will be determined (Section 3.2);

(iii) After the nonequilibrium thermodynamic rela-

tionship between the mass flux at the interface

and the vapor pressure in a bubble nucleus has

been determined (Section 3.3), the relationship

between the mass flux at the interface and the

bubble growth rate at the moment of bubble

nucleation can be derived (Section 3.4). It will be

shown that the mass flux at the interface is

a bridge that connects the nonequilibrium

vapor pressure and the bubble growth rate (Sec-

tion 3.5).

It should be noted that two other assumptions used

in the classical work will also be used in the present

work:

(i) While it is well known from molecular dynamics

simulations that there exist interfacial ambigu-

ities in a microbubble [23], the shape of the

bubbles will be assumed to remain spherical

at all times. The shape of the embryo with a

radius of 1–10 nm usually deviates slightly from

that of a sphere and thus has some size ambi-

guities;
(ii) The liquid is a continuum. Note that Eq. (10) is

based on the incompressible Navier–Stokes equa-

tions. Although the Navier–Stokes equations

failed to model some existing experimental results

of liquid flow in nano-scale, it is known that the

classical model is still valid as long as the thick-

ness of the liquid film exceeds 10 molecular layers

[24]. Note that the typical size of a bubble nuclei

in water is about 5 nm and the molecular distance

is approximately 1 Å. Thus, the traditional contin-

uum model for water is applicable here, but the

continuum model is not valid for the vapor phase

because the bubble size is comparable to the mean

free path of molecules. Thus,all of the properties

of vapor should be regarded as statistically

averaged.

3.1. Initial nucleation temperature

It has been shown previously [2–4] that a liquid with

volume V0, heated at a rate of dTl/dt, may remain in a

liquid state to a temperature Tl, which may be higher

than the equilibrium nucleation temperature. Assuming

that the nucleation probability is defined as f = 1�N/

Ntotal, where N/Ntotal is the probability that the liquid

with volume V0 will survive to a temperature Tl, Blander

and Katz [4] developed the following expression relating

f to the rate of temperature rise in liquid and the nucle-

ation rate

lnð1� fÞ � � V 0JðT lÞ
b dT l

dt

� � ; ð16Þ

where V0 can be regarded as the volume of superheated

liquid in question, e.g., the volume of superheated liquid

droplets or the volume of superheated liquid films; and b

is the fitting factor if the reversible work of bubble for-

mation is linearized at a reference temperature T0 where

T0 is the temperature calculated from Eq. (1) at which

J(T0) = 1 [2],

b ¼ �dðW min=kT lÞ
dT l

����
T l¼T 0

ð17Þ

At a pressure close to atmospheric and moderate nucle-

ation rates, b is approximately 6–8 deg�1 and the linear-

ization for Wmin is acceptable from J = 10�10/cm3 s to

1010/cm3 s [2]. For the current investigation, b = 7 deg�1

was chosen based upon the work presented in Ref. [2].

Rewriting Eq. (16) in the following form

JðT lÞ � � 1

V 0

� b � dT l

dt

� �
� lnð1� fÞ ð18Þ

allows the computation of the nucleation rate for differ-

ent rates of temperature rise in a small volume of super-

heated liquid (where V0 = 10�5cm3).



Fig. 2. Comparison of the theoretical results of the superheat

limit and experimental data at different temperature rise rates in

water at atmospheric pressure (the rate of temperature rise in

the experiments carried out by Blander [4,8] was estimated

according to the rising velocity of liquid droplets and the

elapsed time).
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As mentioned earlier, Delale et al. [10] gave a phe-

nomenological correction to the minimum work for a

vapor bubble of critical size which is given by Eq. (15).

Thus, we have a corrected fitting factor b 0 = b(1�2a)
and Eq. (18) becomes

JðT lÞ � � 1

V 0

� bð1� 2aÞ � dT l

dt

� �
� lnð1� fÞ ð19Þ

Also combining Eq. (14) and (15) yields,

JðT lÞ ¼ N 0

2r
pM0B

� �1=2

1þ dc

� exp � 16pr3

3kT lðP e � P lÞ2d2
ð1� 2aÞ

" #
ð20Þ

As a first step, a can be estimated from experimental

measurements for a specific rate of temperature increase

using Eqs. (19) and (20). Then, the superheat limit of

water, Tl, at different rates of temperature rise, can be

calculated from Eqs. (19) and (20). By comparing with

the experimental results, Delale et al. [10] found that

for a quasi steady-state process, an assigned value of

a = 7/16 yields good agreement between the theoretical

and experimental results. However, it appears that such

a simple correction is not adequate for an unsteady-state

analysis, especially for high rates of temperature rise.

After a detailed comparison with the existing experimen-

tal data, we propose the following expression with an

exponential correction factor for a transient process:

a ¼ 7

16
expð�dT l=dtÞ ð21Þ

Note that when dTl/dt! 0 for steady-state, the above

equation gives a = 7/16 as assigned by Delale et al.

[10], and when dTl/dt! 1, the above equation gives

a = 0 to which classical theory applies. Here, the proba-

bility of nucleation is chosen to be f = 0.5. The results of

the ensuing calculations are presented in Table 1, where

Pc is the critical pressure calculated from Eq. (4), rc is the

critical radius calculated from Eq. (6) with Pv replaced
Table 1

Superheat limit and the critical parameters in water with different tem

dT l

dt (K/s) J (cm�3 s�1) Tl (K) T l

T c
rc

10�2 600 550.9 0.851 7.

0.1 1 · 104 557.9 0.862 6.

1 3 · 105 574.3 0.887 3.

10 4.85 · 106 579.0 0.895 3.

102 4.85 · 107 579.5 0.895 3.

103 4.85 · 108 579.9 0.896 3.

104 4.85 · 109 580.4 0.897 3.

105 4.85 · 1010 580.8 0.897 3.

106 4.85 · 1011 581.3 0.898 3.

107 4.85 · 1012 581.9 0.899 2.

108 4.85 · 1013 582.4 0.900 2.
by Pc, and Tc = 647.3 K is the critical temperature of

the water. A comparison of the theoretical results of

the superheat limit for different rates of temperature in-

crease, with experimental data presented or cited in

Refs. [2,6,8,25,26] is presented in Fig. 2, which shows a

good agreement of the nucleation temperature between

the theoretical prediction from Eqs. (19)–(21) and the

experimental results for a large change in the tempera-

ture rise rate.

The temperature rise in a liquid when the first bubble

embryo is formed after the temperature of the liquid has

reached the required superheat can be estimated simply

from DTl � (1/J Æ V0)dTl/dt and Eq. (19). For example, it

can be found from Eq. (19) that at atmospheric pressure,

when nucleation may occur (f = 0.5), the nucleation rate,

J, is approximately 5 · 1012/cm3 s for dTl/dt = 107 K/s,
perature rise rates (f! 0.5, Tc = 647.3 K)

(nm) dc Pc (MPa) Pe (MPa)

27 1.37 5.85 6.09

05 1.18 6.44 6.76

83 0.81 7.99 8.51

28 0.64 8.68 9.34

22 0.63 8.73 9.40

18 0.62 8.77 9.46

13 0.61 8.82 9.51

09 0.60 8.87 9.57

04 0.59 8.93 9.64

99 0.58 8.98 9.70

94 0.57 9.04 9.77
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and the temperature rise in the liquid will only be 0.2 K

higher than the superheat when the first occurrence of

bubble nucleation takes place. As a first approximation,

it can be assumed that as the moment of bubble nucle-

ation approaches and the bulk temperature of the liquid

reaches the superheat limit, the transient process can be

considered to be a constant temperature process (quasi-

steady state process) for a very short period of time and

the classical kinetics of nucleation are therefore applica-

ble for prediction of the nucleation temperature and the

determination of the thermophysical properties of the

fluid.

3.2. Initial variation of vapor pressure in bubble nuclei

It is difficult to determine the nonequilibrium vapor

pressure in initially nucleated bubbles because the phys-

ical process is not well understood at the present time. It

is, however, well known that while the vapor pressure in

a homogeneous nucleate bubble embryo is much higher

than the ambient liquid pressure [2], the vapor pressure

will decrease with an increase in the volume of the bub-

ble as observed by many researchers [12–14]. Asai [13]

obtained the following expression for the vapor pressure

in bubbles during the early period of growth in a vapor

explosion by an exponential function of the form:

P 0 ¼ P v exp � 1þ t=s1ð Þ 1þ t=s2ð Þ1=2
j k

ð22Þ

wherePv was assumed as the initial pressure in bubble nu-

clei, and s1 and s2 are time-scale parameters from the

experiments. Eq. (22) satisfies the condition that dP 0/

dt = 0 at t = 0. Thus, it would appear that the vapor pres-

sure inside the bubble may be an extremum at the mo-

ment of the formation of a bubble nuclei in a bulk liquid.

From molecular dynamics [27], the statistically ex-

erted pressure, which comes from n evaporated mole-

cules moving from the liquid state to the vapor state in

a bubble nucleation process for a constant N0, Pl, Tl,

can be calculated by the virial representation

P ¼ nkT
V

� 1

3V

X
i

X
i<j

rij
d/ðrijÞ
drij

* +
ð23aÞ

where / is the potential given by

/ðrijÞ ¼ 4e
r0

rij

� �12

� r0

rij

� �6
" #

ð23bÞ

Eq. (23b) is the Lennard-Jones (LJ) 12-6 potential. In

Eq. (23a) the first term in the right-hand side is for the

momentum flux caused by molecular motion and the

second term is caused by intermolecular forces. The term

rijd/(rij)/drij in Eq. (23a) is negative and increases with

an increase of rij, and then once it reaches its positive

maximum, decreases with the increase in the molecular
distance, rij, to approach zero. This means that the pres-

sure exerted by the evaporated molecules n will increase

before the bubble embryo is formed. After a vapor bub-

ble is formed, the second term in Eq. (23a) will approach

zero and the pressure in the vapor bubble will decrease

with bubble growth similar to that occurring in an ideal

gas. This concept has been previously discussed in the lit-

erature [7,13,14]. Okumura and Ito [16] used a molecular

dynamics simulation approach to study unsteady-state

bubble nucleation and collapse. In their investigation,

80 atoms in a bulk liquid were selectively heated and

the resultant scattering of the neighboring nonheated

atoms was observed. This scattering resulted in bubble

formation and then the bubble was cooled and com-

pressed by the surrounding liquid. The bubble dynamics

were observed to be in good agreement with the classical

Rayleigh–Plesset equation given by Eq. (10). In their

study, the number of atoms constituting the bubble sur-

face was estimated and the pressure contribution from

these atoms was calculated. It was found that the pres-

sure increased for a very short time because the heated

and accelerated atoms approach each other and the vir-

ial term became large, as discussed previously, and then

the pressure decreased after the pressure reached its

extremum and later relaxed to the equilibrium value.

Wu and Pan [17] presented the time evolution of pres-

sure and temperature during homogeneous bubble

nucleation under heating, using a molecular dynamic

simulation approach. In this investigation, it was found

that at the moment of bubble nucleation the pressure ap-

proaches the extremum.

In the current work, this extremum is interpreted such

that the nonequilibrium vapor pressure in the initially

formed bubble nucleus is an extremum during the entire

bubble nucleation and growth process (even if this is not

true, the initial nonequilibrium vapor pressure should be

very close to this extremum). The intermolecular forces

will decrease during the evolution from a bubble nucleus

to a stable bubble as discussed previously. Consequently,

the vapor pressure will be decreasing during the evolu-

tion, as described by Asai [13] and Okumura and Ito

[16]. This means that during homogeneous nucleation,

the pressure in the bubble nucleus will be at a local max-

imum at the moment of the bubble nucleus formation,

such that dP 0/dt = 0, d2P 0/dt2 6 0 regardless of its size.

Based upon the preceding discussions, this assumption

is quite reasonable, and while a rigorous proof of this

assumption is beyond the scope of the current investiga-

tion, the accuracy can be verified and confirmed through

analysis of the initial bubble growth and comparison

with the published experimental results, which follows

herein. A rigorous proof could be obtained from a com-

bined nonequilibrium statistical thermodynamics and

molecular dynamics perspective.

It should be noted that the hypothesis dP 0/dt = 0 is

reasonable only at the moment of the formation of a bub-
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ble nucleus. In fact, the variation of the vapor pressure in

the bubbles is still not well understood at the present time.

This is especially true for situations involving rapid tran-

sient phase change processes induced by pulsed heating

or rapid depressurization of a liquefied gas, where the

vapor pressure in an initially nucleated bubble, may or

may not be at the maximum during the whole process.

As mentioned previously, the nonequilibrium hydro-

dynamic relationship between the vapor pressure, P 0, in

a bubble and the motion of the bubble surface is given

by Eq. (10) in terms of r and _r, €r. Other relationships be-

tween r, _r,€r andP 0 are required in order to solve the above

equation. These relationships are obtained in the follow-

ing sections based on energy and mass conservation.

3.3. Initial mass flux at interface

During the formation of a bubble nucleus, there ex-

ists a continuous energy and mass transfer at the bubble

interface. Focusing attention on the mass in the vapor

bubble and the mass that will be evaporated, the energy

conservation for an open thermodynamic system yields

dQ = dH�VdP 0, which gives

ð24Þ

where the term dn/dt is also given by Eq. (12) with

Tinterface being an unknown quantity. The first two terms

on the right-hand side of the above equation, with CP

denoting the thermal capacity per molecule, are the en-

thalpy increase of the controlled mass under consider-

ation. With the aid of the Clausius–Clapeyron equation

dT
dP

¼ T
hfg � qv

ð25Þ

and under the assumption of dP 0/dt = 0 during the ini-

tial period of bubble formation, the last two terms of

Eq. (24) would disappear. A comparison of Eq. (11)

and Eq. (24) without the last two terms shows that the

heat sensitive terms in Eq. (24) were overlooked in

Kagan�s analysis, even for a steady-state process.

Integrating Eq. (24) with respect to r, from r to

r! 1, and with the aid of Eq. (25) and with the

assumption of dP 0/dt = 0, we obtain Tinterface�Tl as

T interface � T l ¼ �
CP

4pkr
dn
dt

ðT 0 � T lÞ þ
DH fg

4pkr
dn
dt

1� CP

4pkr
dn
dt

� � CP

4pkr
dn
dt

ðT 0 � T lÞ �
DH fg

4pkr
dn
dt

ð26Þ
where CP
4pkr

dn
dt � 1 and Tinterface is unknown. Substituting

Eq. (26) and P 0V = nkT 0 into Eq. (25) gives,

P cðT interfaceÞ
P cðT lÞ

¼ 1�
dn
dt ½DH

2
fg þ CPDH fgðT 0 � T lÞ�

4pkT 2
l kr

ð27Þ

Substituting Eq. (27) into Eq. (12) yields,

dn
dt

� A

ð2pM0kT lÞ1=2ð1þ dkÞ
ðP cðT lÞ � P 0Þ ð28aÞ

where

dkðr; T 0Þ ¼ P cðT lÞ
DH 2

fg þ DH fgCP ðT 0 � T lÞ
k2T 2

l

" #

� k
2pM0T l

� �1=2 r
k

ð28bÞ

Letting r = rc = 2r/[Pc(Tl) � Pl,1] and T 0 = Tl for the

critical bubble nuclei and substituting these into Eq.

(28b), dk is reduced to dc

dc ¼
DH fg

kT l

� 	2
2k

pM0T l

� �1=2 r
k

P c

P c � P l

� �
ð29Þ

which is the factor that appears in Eq. (14) and was first

derived by Kagan [15]. The typical values of dc for water
are presented in Table 1, which show that dc is not

sensitive to the initial nucleation temperature and the

temperature rise rate.

3.4. Initial bubble growth rate

In order to calculate the initial pressure of the bub-

bles from Eq. (10), it is necessary to obtain expressions

for the initial bubble growth rate and the interface accel-

eration. As discussed previously, Kagan used a combi-

nation of Eqs. (10) and (12) and the state equation of

ideal gas, P 0V = nkT 0, to calculate ðd _n=drÞr¼rc
and in this

way the complicated relationship between P 0 and _r;€r can
be avoided. In Kagan�s derivation, the vapor tempera-

ture was assumed to be the same as the liquid tempera-

ture and constant for a steady-state process and thus,

the sensitive heat terms in Eq. (24) were overlooked in

Kagan�s analysis, Eq. (11). It is apparent from the deri-

vations of the expressions developed in the previous sec-

tion that the vapor temperature is different from the

liquid bulk temperature, otherwise the derivation of

the relationship between the bubble surface temperature

and the bulk temperature for different temperature in-

crease rates would not make sense. A similar paradox

exists in Kagan�s derivation.
From mass conservation (see Fig. 1) and taking the

entire mass in the bubble as the control mass, yields

dm
dt

� d

dt
ðqvV Þ ð30Þ



3090 J. Li et al. / International Journal of Heat and Mass Transfer 48 (2005) 3081–3096
It follows that the initial bubble growth rate is

_r � 1

qvA
dm
dt

� r
3qv

dqv

dt
ð31Þ

With the assumptions, dP 0/dt = 0 and the assumption

that Eq. (25) is valid at the moment of the initial forma-

tion of a bubble nucleus, the variation of the vapor den-

sity with respect to time can be neglected (i.e., dqv/
dt = 0) if the vapor is assumed to behave as an ideal

gas (P 0 = qvRT 0). Consequently, Eq. (31) becomes

_r ffi M0

qvA
dn
dt

ð32Þ

Eq. (32) gives the relationship between the rate of molec-

ular evaporation, dn/dt, and the velocity of the surface

of the initial nucleate bubble. Substituting Eq. (28a) into

Eq. (32) yields

_r ffi M1=2
0

qvð2pkT lÞ1=2ð1þ dkÞ
ðP cðT lÞ � P 0Þ ð33Þ

Differentiating the above equation with respect to t, the

initial acceleration of the bubble surface can be ex-

pressed as

€r ¼ d

dt
ð_rÞ

ffi d

dt
M1=2

0

qvð2pkT lÞ1=2ð1þ dkÞ
ðP cðT lÞ � P 0Þ

" #
ð34aÞ

If Pl = constant and dk is regarded as a constant, with

the assumption that dP 0/dt = 0 and the assumption that

Eq. (25) is valid, it follows from Eq. (34a) that

€r ¼ d

dt
ð_rÞ

¼ M1=2
0

ð2pkT lÞ1=2ð1þ dkÞ
hfgd
T l

dT l

dt

� M1=2
0

ð2pkT lÞ1=2ð1þ dkÞ
1

2qvT l

P cðT lÞ � P 0½ � dT l

dt
ð34bÞ

Eq. (34b) describes the temperature variation in the li-

quid which causes the temperature variation at the inter-

face and further affects the variation of the evaporation

rate at the interface. This, in turn, affects the accelera-

tion of the surface of the bubble. With _r and €r given

by Eqs. (33) and (34b), the value of P 0 can be calculated

from Eq. (10).

3.5. Nonequilibrium initial nucleation in an unsteady

process

From Eqs. (10) and (27a), it can be shown that

dn
dt

¼ A

ð2pM0kT lÞ1=2ð1þ dcÞ

� P cðT lÞ � P l � ql r€r þ 3

2
_r2

� �
� 2r

r
� 4m

_r
r

� 	
ð35Þ
Eqs. (10), (32), (34), (35) and (25) are a set of equations

for the complicated relationship between dn/dt and _r; €r,
P 0, T 0, which is the nonequilibrium model for the initial

bubble nucleation in a superheated liquid during an un-

steady process. These equations can be solved numeri-

cally to obtain the initial bubble growth rate, _r, the

initial bubble acceleration, €r, and the initial pressure in

the bubble, P 0, at a specific rate of temperature increase

for a specific bubble radius, taking into account the vari-

ations of properties with temperature. The procedure of

the numerical solution is as follows:

(1) Initially, the superheated or the initial nucleation

temperature, Tl required for homogeneous boiling

in a liquid for a specific temperature rise rate (dTl/

dt) is obtained from Eqs. (19) and (20). The results

of this calculation are listed in Table 1;

(2) Then, at these values of Tl and dTl/dt, the conver-

gent solutions of dn/dt, _r, €r, P 0, T 0 for nucleated

bubbles with different radii, r, are calculated by

iterating Eqs. (10), (32), (34b), (35) and (25) to

obtain the convergent solutions for dn=dt; _r;
€r; P 0; T 0 if an initial nonequilibrium vapor pres-

sure (here P 0 = Pc is initially assumed) is assumed

for the first iteration. It should be noted here that

all of the thermodynamic and hydrodynamic

properties of the vapor and liquid are tempera-

ture-dependent and the properties are adopted

from Ref. [28].

Homogeneous nucleation at different rates of temper-

ature variation can be investigated following Kagan�s
nonequilibrium mechanics and thermodynamic ap-

proach [15]. Although the current analysis adopts the

nonequilibrium mechanics aspect of the Kagan analysis,

it differs from those of Kagan in the evaluation of the

bubble velocity and the acceleration at the moment of

bubble formation. While Kagan focused attention on

the velocity and acceleration of bubbles having a critical

radius, the current analysis obtains the velocity and

acceleration of different sizes of bubbles based on energy

and mass conservation at the bubble/liquid interface.

The major assumptions used in the present analysis

are: the pressure and temperature of the bubbles are at

the local maximum when the bubble nuclei are formed,

i.e., dP 0/dt = 0 and d2P 0/dt2 6 0. These assumptions are

reasonable and the results of this analysis appear to be

valid from a physical perspective.
4. Results and discussion

In order to identify how far the vapor pressure is

from the equilibrium state in initially nucleated bubbles,

a comparison between the nonequilibrium vapor pres-

sure, P 0, given by Eq. (10) and the equilibrium vapor



Table 2

The initial pressure, velocity and acceleration with different initial bubble sizes at three different temperature rise rates in water

dTl/dt (K/s) r (nm) _r (m/s) €r (m/s2) P 0 (Pa) Pv (Pa)

10�2 6.899 �1.580 · 10�24 11.52 5910646.75203 5910646.75198

6.906 8.524 · 10�25 11.51 5904531.17946 5904531.17941

7.270* 1.163 · 10�22 11.44 5614354.70912 5614354.70907

11.410 9.117 · 10�22 10.96 3614929.05049 3614929.05041

10 2.962 �2.939 · 10�24 1.33 · 104 8897502.28436 8897502.25683

2.966 4.916 · 10�25 1.33 · 104 8887804.33298 8887804.30543

3.279* 3.008 · 10�22 1.31 · 104 8046794.14443 8046794.11435

4.882 1.220 · 10�21 1.26 · 104 5438998.52093 5438998.47797

107 2.699 �1.095 · 10�24 1.34 · 1010 9225353.22227 9200175.69045

2.703 2.449 · 10�24 1.34 · 1010 9215311.64692 9190110.05366

2.990* 3.096 · 10�22 1.32 · 1010 8345067.19957 8317555.65591

4.422 1.245 · 10�21 1.27 · 1010 5695520.42841 5656480.35168

* The critical size of bubble nuclei.

Fig. 3. Initial nonequilibrium pressure in a bubble with the

different sizes at different temperature rise rates in a liquid.
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pressure, Pv, given by Eq. (6) are shown in Table 2, for

three different rates of temperature increase. It should be

noted that the vapor pressure decreases with the increase

of the initial bubble size. This is because the smaller the

bubble nucleus, the greater the effect of the surface ten-

sion on P 0 as indicated in Eq. (10). When the rate of tem-

perature increase in the liquid is relatively low, as shown

in Table 2 (i.e., in the range of dTl/dt = 10�2 K/s), the

difference between the vapor pressure derived from the

hydrostatic and hydrodynamic relationships is quite

small, but when the rate of temperature increase in the

liquid is high (i.e., in the range of dTl/dt = 107 K/s),

the difference between the vapor pressure derived from

the hydrostatic and hydrodynamic relationships is quite

noticeable, especially when the initial bubble size is lar-

ger than the critical value. The vapor pressure derived

from the hydrodynamic relationship is somewhat greater

than the vapor pressure derived from the hydrostatic

relationship at the same bubble size according to Eq.

(10), which provides the driving force for bubble growth.

Fig. 3 shows that the initial nonequilibrium vapor pres-

sure (P 0�Pv) in bubble nuclei with different sizes at dif-

ferent rates of temperature increases in liquid.

Fig. 4 illustrates that the initial bubble velocity in-

creases with the increase of the initial bubble size. At a

given bubble size, the growth rate of the bubbles in-

creases as the rate of the temperature rise increases. It

is interesting to note that the velocity for bubble growth

is negative for the bubble if its size is below the critical

bubble size, while the velocity for bubble growth is posi-

tive if its size is above the critical value. The bubble

growth velocity is zero if the bubbles are close to their

critical values. This can be explained by observing that

the net rate of vaporization of molecules into a bubble,

dn/dt, increases with the increase of the initial bubble

size or with the decrease of the initial bubble pressure,

P 0, as shown in Eq. (12). These results help to explain
why the initial bubble size must be greater than the crit-

ical size in order to grow and form a stable bubble. This

result also agrees with the second law of thermodynam-

ics, i.e., that the bubble with a size greater than critical

size will grow spontaneously.

Fig. 5 shows that the initial bubble acceleration in-

creases drastically from about 10 m/s2 to 1 · 1010 m/s2

as the temperature rise rate increased from 10�2 K/s to

107 K/s. However, the initial acceleration rate of the

bubble is relatively independent of the initial bubble ra-

dius when the bubble size is larger than the critical size.

Iida and Okuyama [6] obtained an average acceleration

of approximately 1.4 · 108m/s2 for a temperature rise

rate of 5.26 · 106 K/s in water on a smooth platinum

microheater. It should be noted that in the experiments

of Iida and Okuyama [6], the minimum time difference



Fig. 4. Initial velocity of a bubble with different sizes at the

different temperature rise rates in a liquid.

Fig. 5. Initial acceleration in a bubble with different sizes at

different temperature rise rates in a liquid.

Fig. 6. Minimum work W required to form a bubble when dTl/

dt = 107 K/s and dTl/dt = 10 K/s, respectively.

Fig. 7. The distribution of bubbles for different sizes when dTl/

dt = 107 K/s and dTl/dt = 10 K/s, respectively.
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between the two photo frames was 0.4 ls, making it very

difficult to identify the original moment of bubble nucle-

ation, due to the rapid growth and speed of the video

camera. Li and Peterson [29] obtained an acceleration

of approximately 10 m/s2 at the moment of boiling incip-

ience for a quasi-steady state process on a smooth plat-

inum microheater inferred from experiments when

t! 0. These experimental data can, however, provide

initial verification of the model proposed here indirectly.

It should also be noted that the results presented in Figs.

3–5 are meaningful only at the initial nucleation stage.

After a stable bubble is formed, the variations of pres-

sure, velocity and acceleration are different from those

shown in Figs. 3–5 and are related to the bubble dynam-

ics as noted in several previous theoretical and experi-

mental investigations [6,13,26,29].
Fig. 6 illustrates the minimum work, W, required to

form a bubble in a homogeneous liquid phase with a sin-

gle component, when dTl/dt = 107 K/s and dTl/

dt = 10 K/s, as calculated from Eq. (5) based on the non-

equilibrium vapor pressure, P 0, presented in Fig. 3. The

minimum work, W, is shown to be a maximum around

the critical bubble size, which is consistent with the clas-

sical nucleation theory. The number distribution of bub-

bles with different sizes can be obtained from Eqs. (5),

(10) and (13), and the results are presented in Fig. 7

for dTl/dt = 107 K/s and dTl/dt = 10 K/s, respectively.

Fig. 8 illustrates the minimum work, W, required to

form a bubble and the number and distribution of bub-

bles with different sizes, when dTl/dt = 10�2 K/s. In Fig.

8, the contributions from the bubbles with a size much

greater than, or smaller than the critical value have the

dominant role in bubble nucleation.



Fig. 8. The minimum work W required to form a bubble as a

function of the bubble radius when dTl/dt = 10�2 K/s.
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5. Nonequilibrium vapor pressure in bubble nuclei

The analysis of the initial nonequilibrium nucleation

and bubble growth is very limited in classical bubble

dynamics. Bornhorst et al. [30] were the first to intro-

duce nonequilibrium thermodynamics into the study of

bubble dynamics, and they considered almost all aspects

of bubble growth. With the analysis of the noncon-

tinuous pressure distribution between the vapor and

liquid phases they determined the pressure difference

between the actual pressure of the liquid at the interface,

Pl,interface, and the saturation pressure, Pe,interface, at

Tinterface

df P � P l;interface � P e;interface

¼ P eðT lÞ � Pl;1½ � þ qvhfg
T l

½ðT l � T interfaceÞ � DT s�

ð36Þ

where DTs is the superheat of the liquid at infinity

DTs = Tl � Ts(Pl,1). If the liquid–vapor system is in

equilibrium, dfP is zero. Because of the difficulty in-

volved in the determination of this nonequilibrium con-

dition, Zeng et al. [14] and Lee et al. [31] assumed an

arbitrary condition of T 0 = Tl + DTdisturbance. By means

of the analysis derived in the current work, this nonequi-

librium disturbance can be fully derived.

The size of the bubble is clearly important in that

once formed, the condition, _r P 0 must be true in order

for the bubble to grow (i.e., the bubble will grow up
Table 3

Average initial bubble size and nonequilibrium vapor pressure for th

dTl/dt (K/s) rinitial (nm) P
0
(MPa) rc (nm

10�2 11.4 3.6311 7.27

10 4.87 5.4538 3.28

107 4.40 5.7196 2.99
spontaneously and satisfy the second law of thermody-

namics) and also, Wmin P 0 (i.e., it must satisfy the first

law of thermodynamics). Given these constraints, the

average parameters for stable boiling may be established

and can be modeled using statistical methods, e.g., the

initial size, the initial velocity, the initial acceleration

and the initial nonequilibrium vapor pressure.

From Fig. 4 and Table 2 it is apparent that around

the critical bubble size, the velocity will change from

negative to positive. Thus, statistically the average initial

radius of a bubble under a given rate of bulk tempera-

ture rise, dTl/dt, can be obtained from

r ¼
R rW
rc

r � NðrÞdrR rW
rc

NðrÞdr
ð37Þ

and

P 0 ¼ P 0ðrÞ ð38Þ

where rW is the bubble radius corresponding to

Wmin = 0. According to Eqs. (37) and (38) and the re-

sults shown in Figs. 3, 7 and 8, the averaged parameters

for the bubble nuclei which are most likely to appear in a

given liquid for a certain transient boiling process with a

given temperature rise rate, dTl/dt, can be obtained and

will satisfy the conditions, _r P 0 and Wmin P 0. Some

results are shown in Table 3.

To predict the initial bubble size in homogeneous

nucleation in engineering applications, a relationship be-

tween the statistically averaged initial bubble radius and

the temperature rise rate in the bulk liquid dTl/dt can be

obtained from the data shown in Table 3. Fitting the re-

sults yields

rinitial ¼ rcðT lÞ þ f
dT l

dt

� �
ð39aÞ

where

f
dT l

dt

� �
¼ 2.10� 10�9 � 6.15� 10�10 dT l

dt

þ 1.63� 10�10dT l

dt

2

� 1.29� 10�11dT l

dt

3

ð39bÞ

The results from Eq. (39b) and the calculated data,

rinitial � rc, are shown in Fig. 9. As shown, the error

resulting from the curve fitting is very small and quite

acceptable. Thus, the initial average radius can be ob-

tained using Eq. (39) for a given temperature rise rate.
ree different bulk temperature rise rates

) rW min>0
(nm) dneP ¼ P

0 � P v (Pa)

11.4 9.42 · 10�5

4.88 4.29 · 10�2

4.42 3.89 · 104



Fig. 9. The relationship between the statistically averaged

initial bubble radius and the rate of temperature rise in bulk

liquid dTl/dt from the data shown in Table 3. Fig. 10. Nonequilibrium pressure perturbation in vapor phase

as a function of the temperature rise rate in a liquid.
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From Eq. (10)

dneP � P 0 � P v ¼ qlr€r þ ql

3

2
_r2 þ 4m

_r
r

ð40Þ

where Pv is the hydrostatic pressure defined by Eq. (6).

Combining Eqs. Eqs. (40), (33) and (34), and considering

that the magnitude of the first term on the right-hand

side of Eq. (40) is approximately 10�6–105 for different

rates of temperature rise, and that the magnitudes of

the second and third terms are approximately 10�40

and 10�20, respectively, (the second term was also omit-

ted in Kagan�s derivation for the same reason, and also

the effect of viscosity can be negligible in water nucle-

ation), yields

dneP � P 0 � P v � eqlr€r ð41Þ

Here e is another adjustable parameter, similar to a in

Section 3, where the value of e can be obtained either

from a comparison with the theoretical method as

shown in the current work or estimated by comparison

with experimental results available in the literature.

With this, the nonequilibrium pressure disturbance in

the vapor phase can be derived in terms of the rate of

temperature rise in the liquid as,

dneP � P 0 � P v � eqlr€r

¼ eqlr
M1=2

0

ð2pkT lÞ1=2ð1þ drÞ
hfgd
T l

dT l

dt

(

� M1=2
0

ð2pkÞ1=2ð1þ drÞ
1

qvT l

½P cðT lÞ � P 0� dT l

dt

)
ð42Þ

Rewriting Pc(Tl) � P 0 = (Pc � Pv) � (P 0 � Pv) and after

some algebraic manipulations, Eq. (42) becomes

dneP ¼ c1qlr � c2qlrðP c � P vÞ
1� c2qlr

dT l

dt

dT l

dt
ð43aÞ
where

c1 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffi
M0

2pkT l

r
1

1þ dr

hfgd
T l

c2 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffi
M0

2pkT l

r
1

1þ dr

1

qvT l

ð43bÞ

and e is approximately unity for water. The results from

Eq. (43) for different rates of temperature rise are shown

in Table 3. These results are presented in a log–log plot

as shown in Fig. 10, which can be represented as a

straight line expressed as

dneP ¼ 0.0064 � dT l

dt

� �0.96
ð44Þ

Eq. (44) can be used to calculate the initial non-

equilibrium pressure disturbance. Thus, the average

nonequilibrium parameters, rinitial; P 0
initial and the non-

equilibrium disturbance, dneP, can be determined for

the initial bubble nucleation for a given temperature rise

rate. With the equations proposed in the current work,

the initial disturbance for bubble growth can be solved

within an acceptable error range.
6. Conclusions

In this investigation, quantitative results for the va-

por pressure, bubble interface velocity and the rate of

bubble growth during the initial stage of bubble nucle-

ation in a homogeneous liquid at different temperature

rise rates are presented. These results can be used to ob-

tain some missing information from classical bubble

nucleation theory, such as the nonequilibrium vapor
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pressure in bubble nuclei and the initial interface accel-

eration for different rates of temperature rise in liquid.

The assumption of dP 0/dt = 0 at the bubble nucleation

and two adjustable parameters a and e are introduced

from a theoretical perspective and experimental results,

in order to avoid the complicated nonequilibrium ther-

modynamic analysis, and to demonstrate that the de-

rived equation can be used for predicting the initial

stage of the transient boiling process.

In this investigation, the initial vapor pressure and

the initial growth rate of bubble nuclei with different

bubble sizes at different rates of temperature rise are

quantitatively analyzed in detail for the first time. In

addition, the nonequilibrium pressure disturbance

in the bubble nuclei is analyzed and computed. The fol-

lowing conclusions are obtained from the present

analysis:

(1) The bubble growth velocity is negative if the bub-

ble size is below the critical bubble size, while the

growth velocity is positive if its size is above the

critical value. These results explain why the initial

bubble size must be greater than the critical size,

in order to grow spontaneously and become a sta-

ble bubble.

(2) The vapor pressure derived from the hydrody-

namic relationship is slightly greater than the

vapor pressure derived from the hydrostatic rela-

tionship at the same bubble size, which provides

the driving force for bubble growth from the ini-

tial size.

(3) The number of bubble nuclei, N(r), computed

from the Boltzmann equation, has a minimum

value at the critical size, while most of the bubbles

are distributed away from the critical size. Thus,

the contributions from the bubbles with sizes

different than the critical value play a dominant

role, especially at low temperature increase rates.

Even though the kinetic theory presents some diffi-

culties in dealing with nanoscale embryos [23], the the-

ory is the only one that connects the phase change

mechanism in microscale with the observed macroscale

phenomena, making the results of the present analysis

very useful in the theoretical analysis and design of

microscale electro mechanical systems.
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